library("tidyr")
library("dplyr")
library("readr")
library("ggplot2")
library("ggbreak")
library("patchwork")
library("ggpubr")
MyMerge <- function(x, y){
df <- merge(x, y, all = TRUE)
rownames(df) <- df$Row.names
df$Row.names <- NULL
return(df)
}
TV_NDVI_orig_2021 <- read.csv("../Data/2021_Toolik_NDVI.csv", header = TRUE)
TV_NDVI_orig_2020 <- read.csv("../Data/2020_Toolik_NDVI.csv", header = TRUE)
TV_NDVI_orig_2019 <- read.csv("../Data/2019_Toolik_NDVI.csv", header = TRUE)
TV_NDVI_orig_2018 <- read.csv("../Data/2018_Toolik_NDVI.csv", header = TRUE)
Remove data we don’t need
TV_NDVI_clean_2021 <- TV_NDVI_orig_2021 %>%
select(Site, Treatment, Quadrat.Chamber.., Replicate.., NDVI) %>%
filter(Quadrat.Chamber.. != "CH1" & Quadrat.Chamber.. != "CH2" & Quadrat.Chamber.. != "CH3" & Quadrat.Chamber.. != "") %>%
rename("quad" = "Quadrat.Chamber..", "treatment" = "Treatment", "site" = "Site", "rep" = "Replicate..") %>%
mutate(year = "2021")
TV_NDVI_clean_2021$quad <- TV_NDVI_clean_2021$quad %>%
recode("Q1" = "1", "Q2"= "2", "Q3"= "3", "Q4"= "4", "Q5"= "5", "Q6"= "6", "Q7"= "7", "Q8"= "8")
TV_NDVI_clean_2020 <- TV_NDVI_orig_2020 %>%
select(Site, Treatment, Quadrat, Scan, NDVI) %>%
rename("quad" = "Quadrat", "treatment" = "Treatment", "site" = "Site", "rep" = "Scan")%>%
filter(quad != "MISCAN")%>%
mutate(year = "2020")
TV_NDVI_clean_2019 <- TV_NDVI_orig_2019 %>%
select(Site, Treatment, Quadrat, NDVI) %>%
filter(Quadrat != "CH1" & Quadrat != "CH2" & Quadrat != "CH3") %>%
rename("quad" = "Quadrat", "treatment" = "Treatment", "site" = "Site")%>%
mutate(year = "2019")
TV_NDVI_clean_2019$quad <- TV_NDVI_clean_2019$quad %>%
recode("Q1" = "1", "Q2"= "2", "Q3"= "3", "Q4"= "4", "Q5"= "5", "Q6"= "6", "Q7"= "7", "Q8"= "8")
TV_NDVI_clean_2018 <- TV_NDVI_orig_2018 %>%
select(SITE, TREATMENT, QUAD2, NDVI) %>%
filter(QUAD2 != "F1" & QUAD2 != "F2" & QUAD2 != "F3" & QUAD2 != "") %>%
rename("quad" = "QUAD2", "treatment" = "TREATMENT", "site" = "SITE")%>%
mutate(year = "2018")
TV_NDVI_clean_2018$quad <- TV_NDVI_clean_2018$quad %>%
recode("C1" = "1", "C2"= "2", "C3"= "3", "C4"= "4", "C5"= "5", "C6"= "6", "C7"= "7", "C8"= "8")
unique(TV_NDVI_clean_2018$quad)
## [1] "1" "2" "3" "4" "5" "6" "7" "8"
Merge the years together
TV_NDVI_CLEAN <- Reduce(MyMerge, list(TV_NDVI_clean_2021, TV_NDVI_clean_2020, TV_NDVI_clean_2019, TV_NDVI_clean_2018))%>%
mutate(quad = as.numeric(quad))
Average across reps, then across quadrants.
NOTE: 2018 and 2019 didn’t have columns to indicate rep number, they just listed the same quad info multiple times. This will still work with the code below because we do not need to group by rep.
LOGIC CHECK: N should equal 8 since there should have been 8 reps. 7 is also acceptable (we might have only done 7 or we could have removed a scan for an error). If any other numbers show up then investigate why its not 7 or 8 and correct the mistake.
TV_NDVI_avg_rep <- TV_NDVI_CLEAN %>%
group_by(year, site, treatment, quad) %>%
summarise(NDVI_avg = mean(NDVI, na.rm = TRUE), n = n(), sd_rep = sd(NDVI, na.rm = TRUE))
## `summarise()` has grouped output by 'year', 'site', 'treatment'. You can override using the `.groups` argument.
TV_NDVI_avg <- TV_NDVI_avg_rep %>%
group_by(year, site, treatment) %>%
summarise(avg_NDVI = mean(NDVI_avg, na.rm = TRUE), n = n(), sd = sd(NDVI_avg, na.rm = TRUE))
## `summarise()` has grouped output by 'year', 'site'. You can override using the `.groups` argument.
TV_NDVI_avg$treatment <- factor(TV_NDVI_avg$treatment, levels = c("CT", "EX", "PU", "PR"))
ggplot(TV_NDVI_avg, aes(x= year, y=avg_NDVI, fill = treatment))+
geom_hline(yintercept = 0.6, color="#D0CECE")+
geom_boxplot(position=position_dodge(.85))+
scale_fill_manual(values=c("CT" = "#a6611a",
"EX" = "#dfc27d",
"PU" = "#80cdc1",
"PR" = "#018571"))+
stat_summary(fun.y="mean", color="#D1D1D1", size = .5, shape = 18, position=position_dodge(.85))+
theme_light()+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
theme(plot.title = element_text(hjust = .5))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme(aspect.ratio = 9/18.5)+
labs(y = "Mean NDVI", x = "")
## Warning: `fun.y` is deprecated. Use `fun` instead.
## Warning: Removed 15 rows containing missing values (geom_segment).
#theme(legend.position="bottom")
ggsave("../Figures/Teamvole_boxplot_NDVI.jpeg")
## Saving 7 x 5 in image
## Warning: Removed 15 rows containing missing values (geom_segment).
TV_NDVI_avg_rep$treatment <- factor(TV_NDVI_avg_rep$treatment, levels = c("CT", "EX", "PU", "PR"))
ggplot(TV_NDVI_avg_rep, aes(x= year, y=NDVI_avg, fill = treatment))+
geom_hline(yintercept = 0.6, color="#D0CECE")+
geom_boxplot(position=position_dodge(.85))+
scale_fill_manual(values=c("CT" = "#a6611a",
"EX" = "#dfc27d",
"PU" = "#80cdc1",
"PR" = "#018571"))+
stat_summary(fun.y="mean", color="#D1D1D1", size = .1, shape = 18, position=position_dodge(.85))+
theme_light()+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
theme(plot.title = element_text(hjust = .5))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme(aspect.ratio = 9/18.5)+
labs(y = "Mean NDVI", x = "")+
#theme(legend.position="bottom")+
facet_grid(site ~ .)
## Warning: `fun.y` is deprecated. Use `fun` instead.
## Warning: Removed 15 rows containing missing values (geom_segment).
## Warning: Removed 15 rows containing missing values (geom_segment).
## Warning: Removed 15 rows containing missing values (geom_segment).
ggsave("../Figures/Teamvole_boxplot_NDVI_sites.jpeg")
## Saving 7 x 5 in image
## Warning: Removed 15 rows containing missing values (geom_segment).
## Warning: Removed 15 rows containing missing values (geom_segment).
## Warning: Removed 15 rows containing missing values (geom_segment).
TV_cover_orig <- read.csv("../Derived CSVs/TeamVole_relcov_funcgrp_ALL.csv", header = TRUE)
TV_cover_subset <- TV_cover_orig %>%
select(year, site, treatment, quad, species, cover)%>%
filter(species == "Eri vag" | species == "Bet nan" | species == "Rub cha") %>%
pivot_wider(names_from = species, values_from = cover) %>%
rename("Bet_nan" = "Bet nan", "Eri_vag" = "Eri vag", "Rub_cha" = "Rub cha") %>%
mutate(year = as.character(year), quad = as.numeric(quad))
Join the dataset, drop columns we don’t need, delete 2020 data as we don’t have cover for that year
TV_join <- left_join(TV_NDVI_avg_rep, TV_cover_subset, by= c("year", "site", "treatment", "quad")) %>%
select(-n, sd_rep) %>%
filter(year != "2020")
Bet nan vs NDVI
highlight_CT <- TV_join %>% filter(treatment == "CT")
highlight_EX <- TV_join %>% filter(treatment == "EX")
highlight_PU <- TV_join %>% filter(treatment == "PU")
highlight_PR <- TV_join %>% filter(treatment == "PR")
ggplot(data = TV_join, aes(x = Bet_nan, y = NDVI_avg)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT, aes(x=Bet_nan,y=NDVI_avg), size = 2, color = "#a6611a")+
geom_point(data=highlight_EX, aes(x=Bet_nan,y=NDVI_avg), size = 2, color = "#dfc27d")+
geom_point(data=highlight_PU, aes(x=Bet_nan,y=NDVI_avg), size = 2, color = "#80cdc1")+
geom_point(data=highlight_PR, aes(x=Bet_nan,y=NDVI_avg), size = 2, color = "#018571")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Bet nan")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.3)+ #adds R2
#stat_cor(method = "pearson", label.x = .3)+ #adds p-value
facet_grid(site ~ .)
#facet_grid(. ~ site)
#ggsave("../Figures/Teamvole_regrestion_Betnan_NDVI.jpeg")
Eri vag vs NDVI
highlight_CT <- TV_join %>% filter(treatment == "CT")
highlight_EX <- TV_join %>% filter(treatment == "EX")
highlight_PU <- TV_join %>% filter(treatment == "PU")
highlight_PR <- TV_join %>% filter(treatment == "PR")
ggplot(data = TV_join, aes(x = Eri_vag, y = NDVI_avg)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT, aes(x=Eri_vag,y=NDVI_avg), size = 2, color = "#a6611a")+
geom_point(data=highlight_EX, aes(x=Eri_vag,y=NDVI_avg), size = 2, color = "#dfc27d")+
geom_point(data=highlight_PU, aes(x=Eri_vag,y=NDVI_avg), size = 2, color = "#80cdc1")+
geom_point(data=highlight_PR, aes(x=Eri_vag,y=NDVI_avg), size = 2, color = "#018571")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Eri vag")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.3)+ #adds R2
#stat_cor(method = "pearson", label.x = .4)+ #adds p-value
#theme(legend.position="bottom")+
facet_grid(site ~ .)
#facet_grid(. ~ site)
ggsave("../Figures/Teamvole_regrestion_Erivag_NDVI.jpeg")
Rub cha vs NDVI
highlight_CT <- TV_join %>% filter(treatment == "CT")
highlight_EX <- TV_join %>% filter(treatment == "EX")
highlight_PU <- TV_join %>% filter(treatment == "PU")
highlight_PR <- TV_join %>% filter(treatment == "PR")
ggplot(data = TV_join, aes(x = Rub_cha, y = NDVI_avg)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT, aes(x=Rub_cha,y=NDVI_avg), size = 2, color = "#a6611a")+
geom_point(data=highlight_EX, aes(x=Rub_cha,y=NDVI_avg), size = 2, color = "#dfc27d")+
geom_point(data=highlight_PU, aes(x=Rub_cha,y=NDVI_avg), size = 2, color = "#80cdc1")+
geom_point(data=highlight_PR, aes(x=Rub_cha,y=NDVI_avg), size = 2, color = "#018571")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Rub cha")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
#stat_regline_equation(label.x=0.2)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.2)+ #adds R2
#stat_cor(method = "pearson", label.x = .2)+ #adds p-value
#theme(legend.position="bottom")+
facet_grid(site ~ .)
#facet_grid(. ~ site)
ggsave("../Figures/Teamvole_regrestion_Rubcha_NDVI.jpeg")
Read in LTER NDVI data
LTER_NDVI_orig <- read.csv("../Data/2011_2018_LMAT_NDVI.csv", header = TRUE)
Subset by year, correct DOY column to reflect year
LTER_NDVI_11 <- LTER_NDVI_orig %>% filter(year == "2011") %>%
mutate(doy_adj = doy)
LTER_NDVI_14 <- LTER_NDVI_orig %>% filter(year == "2014")%>%
mutate(doy_adj = doy+(365*3))
LTER_NDVI_15 <- LTER_NDVI_orig %>% filter(year == "2015")%>%
mutate(doy_adj = doy+(365*4))
LTER_NDVI_16 <- LTER_NDVI_orig %>% filter(year == "2016")%>%
mutate(doy_adj = doy+(365*5))
LTER_NDVI_17 <- LTER_NDVI_orig %>% filter(year == "2017")%>%
mutate(doy_adj = doy+(365*6))
LTER_NDVI_18 <- LTER_NDVI_orig %>% filter(year == "2018")%>%
mutate(doy_adj = doy+(365*7))
merge data back together
LTER_NDVI_CLEAN <- Reduce(MyMerge, list(LTER_NDVI_11, LTER_NDVI_14, LTER_NDVI_15, LTER_NDVI_16, LTER_NDVI_17, LTER_NDVI_18))
LTER_NDVI_CLEAN$time <- LTER_NDVI_CLEAN$time %>%
recode("initial " = "initial")
#specify factor levels for fertilization and clipping treatments
LTER_NDVI_CLEAN$plot <- factor(LTER_NDVI_CLEAN$plot, levels = c("F2", "F5", "F10", "CT"))
ggplot(data = LTER_NDVI_CLEAN, aes(x = doy_adj, y = avg_ndvi, color = plot)) +
scale_color_manual(values = c("CT" = "#d8b365",
"F2" = "#41b6c4",
"F5" = "#2c7fb8",
"F10" = "#253494"))+
theme_light()+
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1),
axis.text.y = element_text(color = "black", size = 8),
axis.line = element_line(colour = "black", linetype = "solid"),
legend.position="none",
plot.title = element_text(hjust = .5))+
geom_line(size = .75) +
geom_point(size = 1.25) +
labs(y = "NDVI", x = "DOY")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
scale_x_break(c(218, 1253)) +
scale_x_break(c(1321, 1618)) +
scale_x_break(c(1685, 1971)) +
scale_x_break(c(2040, 2348)) +
scale_x_break(c(2425, 2727))
ggsave("../Figures//LTER_NDVI_linegraph.jpeg")
## Saving 7 x 5 in image
LTER_cover_orig <- read.csv("../Derived CSVs/LTER_06MAT_relcov_funcgrp_allyrs.csv", header = TRUE)
Subset by year based on # of quads measured per plot in a given year
Q4 <- subset(LTER_cover_orig, year== "2008")
Q5 <- subset(LTER_cover_orig, year== "2015" | year== "2020")
Q8 <- subset(LTER_cover_orig, year== "2010" | year== "2011" | year== "2012" | year== "2013" | year== "2014" | year== "2016" | year== "2017" | year== "2018" | year== "2019" |year== "2010" |year== "2021")
Sum across quadrats in a plot
Q4_sum_avg_quad <- (Q4) %>%
group_by(year, block, plot, species) %>%
summarise_at(vars(rel_cov), list(sum_quad = sum), na.rm = TRUE)
Q5_sum_avg_quad <- (Q5) %>%
group_by(year, block, plot, species)%>%
summarise_at(vars(rel_cov), list(sum_quad = sum), na.rm = TRUE)
Q8_sum_avg_quad <- (Q8) %>%
group_by(year, block, plot, species) %>%
summarise_at(vars(rel_cov), list(sum_quad = sum), na.rm = TRUE)
Create functions/vectors for calculating average rel_cov bases on # of quadrats then fill a new column with the average
avg_Q4_quad <- c(Q4_sum_avg_quad$sum_quad/4)
avg_Q5_quad <- c(Q5_sum_avg_quad$sum_quad/5)
avg_Q8_quad <- c(Q8_sum_avg_quad$sum_quad/8)
#creates and fills a new column with the average (by diving that sum by the number of reps specified)
Q4_sum_avg_quad["avg_quad"] <-avg_Q4_quad
Q5_sum_avg_quad["avg_quad"] <-avg_Q5_quad
Q8_sum_avg_quad["avg_quad"] <-avg_Q8_quad
Merge all the years back together
MyMerge <- function(x, y){
df <- merge(x, y, all = TRUE)
rownames(df) <- df$Row.names
df$Row.names <- NULL
return(df)
}
Avg_quad <- Reduce(MyMerge, list(Q4_sum_avg_quad, Q5_sum_avg_quad, Q8_sum_avg_quad))
Average across blocks
Avg_block <- (Avg_quad) %>%
group_by(year, plot, species) %>%
summarise_at(vars(avg_quad), list(avg_block = mean, block_sd = sd), na.rm = TRUE)
LTER_cover_CLEAN <- Avg_block %>%
filter(species == "Bet nan" | species == "Eri vag" | species == "Rub cha") %>%
select(-block_sd)
Join the dataset, drop columns we don’t need
NDVI_initial <- LTER_NDVI_CLEAN %>%
filter(time == "initial")
LTER_initial <- left_join(NDVI_initial,LTER_cover_CLEAN, by= c("year", "plot")) %>%
select(-doy_adj, -doy) %>%
pivot_wider(names_from = species, values_from = avg_block) %>%
rename("Bet_nan" = "Bet nan", "Eri_vag" = "Eri vag", "Rub_cha" = "Rub cha")
#######
NDVI_half <- LTER_NDVI_CLEAN %>%
filter(time == "half")
LTER_half <- left_join(NDVI_half,LTER_cover_CLEAN, by= c("year", "plot")) %>%
select(-doy_adj, -doy)%>%
pivot_wider(names_from = species, values_from = avg_block) %>%
rename("Bet_nan" = "Bet nan", "Eri_vag" = "Eri vag", "Rub_cha" = "Rub cha")
#######
NDVI_peak <- LTER_NDVI_CLEAN %>%
filter(time == "peak")
LTER_peak <- left_join(NDVI_peak,LTER_cover_CLEAN, by= c("year", "plot")) %>%
select(-doy_adj, -doy)%>%
pivot_wider(names_from = species, values_from = avg_block) %>%
rename("Bet_nan" = "Bet nan", "Eri_vag" = "Eri vag", "Rub_cha" = "Rub cha")
#######
NDVI_post <- LTER_NDVI_CLEAN %>%
filter(time == "post-peak")
LTER_post <- left_join(NDVI_post,LTER_cover_CLEAN, by= c("year", "plot")) %>%
select(-doy_adj, -doy)%>%
pivot_wider(names_from = species, values_from = avg_block) %>%
rename("Bet_nan" = "Bet nan", "Eri_vag" = "Eri vag", "Rub_cha" = "Rub cha")
INITIAL
#specify factor levels for treatments
LTER_initial$plot <- factor(LTER_initial$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_in <- LTER_initial %>% filter(plot == "CT")
highlight_F2_in <- LTER_initial %>% filter(plot == "F2")
highlight_F5_in <- LTER_initial %>% filter(plot == "F5")
highlight_F10_in <- LTER_initial %>% filter(plot == "F10")
Bet_nan_initial <- ggplot(data = LTER_initial, aes(x = Bet_nan, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_in, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_in, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_in, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_in, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Bet nan")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
#stat_cor(method = "pearson", label.x = .3)+ #adds p-value
theme(legend.position="none")
print(Bet_nan_initial)
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
HALF
#specify factor levels for treatments
LTER_half$plot <- factor(LTER_half$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_half <- LTER_half %>% filter(plot == "CT")
highlight_F2_half <- LTER_half %>% filter(plot == "F2")
highlight_F5_half <- LTER_half %>% filter(plot == "F5")
highlight_F10_half <- LTER_half %>% filter(plot == "F10")
Bet_nan_half <- ggplot(data = LTER_half, aes(x = Bet_nan, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_half, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_half, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_half, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_half, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Bet nan")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
#stat_cor(method = "pearson", label.x = .3)+ #adds p-value
theme(legend.position="none")
print(Bet_nan_half)
PEAK
#specify factor levels for treatments
LTER_peak$plot <- factor(LTER_peak$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_peak <- LTER_peak %>% filter(plot == "CT")
highlight_F2_peak <- LTER_peak %>% filter(plot == "F2")
highlight_F5_peak <- LTER_peak %>% filter(plot == "F5")
highlight_F10_peak <- LTER_peak %>% filter(plot == "F10")
Bet_nan_peak <- ggplot(data = LTER_peak, aes(x = Bet_nan, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_peak, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_peak, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_peak, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_peak, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Bet nan")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
#stat_cor(method = "pearson", label.x = .3)+ #adds p-value
theme(legend.position="none")
print(Bet_nan_peak)
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
POST-PEAK
#specify factor levels for treatments
LTER_post$plot <- factor(LTER_post$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_post <- LTER_post %>% filter(plot == "CT")
highlight_F2_post <- LTER_post %>% filter(plot == "F2")
highlight_F5_post <- LTER_post %>% filter(plot == "F5")
highlight_F10_post <- LTER_post %>% filter(plot == "F10")
Bet_nan_post <- ggplot(data = LTER_post, aes(x = Bet_nan, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_post, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_post, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_post, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_post, aes(x=Bet_nan,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Bet nan")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
#stat_cor(method = "pearson", label.x = .3)+ #adds p-value
theme(legend.position="none")
print(Bet_nan_post)
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
Combine the graphs
(Bet_nan_initial+Bet_nan_half)/(Bet_nan_peak+Bet_nan_post) + plot_annotation(tag_levels = 'A')
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
ggsave("../Figures/LTER_Betnan_NDVI_reg.jpg")
## Saving 7 x 5 in image
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
INITIAL
#specify factor levels for treatments
LTER_initial$plot <- factor(LTER_initial$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_in <- LTER_initial %>% filter(plot == "CT")
highlight_F2_in <- LTER_initial %>% filter(plot == "F2")
highlight_F5_in <- LTER_initial %>% filter(plot == "F5")
highlight_F10_in <- LTER_initial %>% filter(plot == "F10")
Eri_vag_in <- ggplot(data = LTER_initial, aes(x = Eri_vag, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_in, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_in, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_in, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_in, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Eri vag")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
stat_cor(method = "pearson", label.x = .15)+ #adds p-value
theme(legend.position="none")
print(Eri_vag_in)
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing non-finite values (stat_cor).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
HALF
#specify factor levels for treatments
LTER_half$plot <- factor(LTER_half$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_half <- LTER_half %>% filter(plot == "CT")
highlight_F2_half <- LTER_half %>% filter(plot == "F2")
highlight_F5_half <- LTER_half %>% filter(plot == "F5")
highlight_F10_half <- LTER_half %>% filter(plot == "F10")
Eri_vag_half <- ggplot(data = LTER_half, aes(x = Eri_vag, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_half, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_half, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_half, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_half, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Eri vag")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
stat_cor(method = "pearson", label.x = .15)+ #adds p-value
theme(legend.position="none")
print(Eri_vag_half)
PEAK
#specify factor levels for treatments
LTER_peak$plot <- factor(LTER_peak$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_peak <- LTER_peak %>% filter(plot == "CT")
highlight_F2_peak <- LTER_peak %>% filter(plot == "F2")
highlight_F5_peak <- LTER_peak %>% filter(plot == "F5")
highlight_F10_peak <- LTER_peak %>% filter(plot == "F10")
Eri_vag_peak <- ggplot(data = LTER_peak, aes(x = Eri_vag, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_peak, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_peak, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_peak, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_peak, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Eri vag")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
stat_cor(method = "pearson", label.x = .15)+ #adds p-value
theme(legend.position="none")
print(Eri_vag_peak)
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing non-finite values (stat_cor).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
POST-PEAK
#specify factor levels for treatments
LTER_post$plot <- factor(LTER_post$plot, levels = c("CT","F2","F5","F10"))
highlight_CT_post <- LTER_post %>% filter(plot == "CT")
highlight_F2_post <- LTER_post %>% filter(plot == "F2")
highlight_F5_post <- LTER_post %>% filter(plot == "F5")
highlight_F10_post <- LTER_post %>% filter(plot == "F10")
Eri_vag_post <- ggplot(data = LTER_post, aes(x = Eri_vag, y = avg_ndvi)) +
geom_point(size = 2)+
geom_smooth(method = "lm", se = TRUE, color = "black")+
geom_point(data=highlight_CT_post, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#d8b365")+
geom_point(data=highlight_F2_post, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#41b6c4")+
geom_point(data=highlight_F5_post, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#2c7fb8")+
geom_point(data=highlight_F10_post, aes(x=Eri_vag,y=avg_ndvi), size = 2, color = "#253494")+
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
theme(axis.text.x = element_text(color = "black", size = 8, angle = 45, hjust = 1))+
theme(axis.text.y = element_text(color = "black", size = 8))+
theme( axis.line = element_line(colour = "black",
size = 1, linetype = "solid"))+
labs(y = "NDVI", x = "Eri vag")+
theme(axis.title.y = element_text(face = "bold"))+
theme(axis.title.x = element_text(face = "bold"))+
ylim(0.2, 0.9)+
#stat_regline_equation(label.x=0.3)+ #adds regression line equation
#stat_cor(aes(label=..rr.label..), label.x=0.35)+ #adds R2
stat_cor(method = "pearson", label.x = .15)+ #adds p-value
theme(legend.position="none")
print(Eri_vag_post)
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing non-finite values (stat_cor).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
Combine the graphs
(Eri_vag_in+Eri_vag_half)/(Eri_vag_peak+Eri_vag_post) + plot_annotation(tag_levels = 'A')
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing non-finite values (stat_cor).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing non-finite values (stat_cor).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing non-finite values (stat_cor).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
ggsave("../Figures/LTER_Erivag_NDVI_reg.jpg")
## Saving 7 x 5 in image
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing non-finite values (stat_cor).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing non-finite values (stat_cor).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing non-finite values (stat_cor).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).